Evolution of vortex knots
نویسندگان
چکیده
For the first time since Lord Kelvin’s original conjectures of 1875 we address and study the time evolution of vortex knots in the context of the Euler equations. The vortex knot is given by a thin vortex filament in the shape of a torus knot Tp,q (p > 1, q > 1; p, q co-prime integers). The time evolution is studied numerically by using the Biot–Savart (BS) induction law and the localized induction approximation (LIA) equation. Results obtained using the two methods are compared to each other and to the analytic stability analysis of Ricca (1993, 1995). The most interesting finding is that thin vortex knots which are unstable under the LIA have a greatly extended lifetime when the BS law is used. These results provide useful information for modelling complex structures by using elementary vortex knots.
منابع مشابه
Vortex knots in a Bose-Einstein condensate.
We present a method for numerically building a vortex knot state in the superfluid wave function of a Bose-Einstein condensate. We integrate in time the governing Gross-Pitaevskii equation to determine evolution and shape preservation of the two (topologically) simplest vortex knots which can be wrapped over a torus. We find that the velocity of a vortex knot depends on the ratio of poloidal an...
متن کاملThe Length of Excitable Knots
The FitzHugh-Nagumo equation provides a simple mathematical model of cardiac tissue as an excitable medium hosting spiral wave vortices. Here we present extensive numerical simulations studying long-term dynamics of knotted vortex string solutions for all torus knots up to crossing number 11. We demonstrate that FitzHugh-Nagumo evolution preserves the knot topology for all the examples presente...
متن کاملKinetic energy of vortex knots and unknots
New results on the kinetic energy of ideal vortex filaments in the shape of torus knots and unknots are presented. These knots are given by small-amplitude torus knot solutions (Ricca, 1993) to the Localized Induction Approximation (LIA) law. The kinetic energy of different knot and unknot types is calculated and presented for comparison. These results provide new information on relationships b...
متن کاملKelvin Waves and Dynamic Knots on Perturbative Helical Vortex Lines
Vortex lines are one-dimensional extended objects in three-dimensional superfluids. Vortex lines have many interesting properties, including Kelvin waves, exotic statistics, and possible entanglement. In this paper, an emergent ”quantum world” is explored by projecting helical vortex lines. A one-dimensional quantum Fermionic model is developed to effectively describe the local fluctuations of ...
متن کاملVelocity, energy, and helicity of vortex knots and unknots.
In this paper we determine the velocity, the energy, and estimate writhe and twist helicity contributions of vortex filaments in the shape of torus knots and unknots (as toroidal and poloidal coils) in a perfect fluid. Calculations are performed by numerical integration of the Biot-Savart law. Vortex complexity is parametrized by the winding number w given by the ratio of the number of meridian...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999